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Abstract
The true Fermi surface of a fermionic many-body system can be viewed as a
fixed point manifold of the renormalization group (RG). Within the framework
of the exact functional RG we show that the fixed point condition implies an
exact integral equation for the counter-term which is needed for a self-consistent
calculation of the Fermi surface. In the simplest approximation, our integral
equation reduces to the self-consistent Hartree–Fock equation for the counter-
term.

1. Introduction

In his authoritative book on interacting Fermi systems, Nozières wrote 40 years ago [1]: ‘In
practice, we shall never try to calculate the Fermi surface, which is much too difficult’. What
is the reason for this difficulty? Formally, the Fermi surface of an interacting Fermi system is
defined as the set of all wavevectors kF satisfying [2]

εkF − µ + �(kF , i0) = 0, (1)

where εk is the energy dispersion in the absence of interactions, µ is the chemical potential, and
�(k, ω) is the exact self-energy of the interacting system1. For simplicity we assume an infinite
and spin-rotationally invariant system at zero temperature, so that �(k, ω) is independent of
the spin. Unfortunately, the function �(kF , i0) in equation (1) is not known a priori, so the
calculation of the true Fermi surface requires the solution of the many-body problem.

For weak interactions, one might try to determine the Fermi surface perturbatively by
simply calculating �(k, i0) in powers of the interaction and substituting the result into
equation (1). However, in general the perturbation series contains anomalous terms [3]
with unphysical singularities, which are generated because the ground state of the non-
interacting system evolves into an excited state of the interacting system when the interaction

1 We assume that �(kF , i0) is real, which is always true for Fermi liquids, where the damping of quasiparticles with
wavevectors precisely on the Fermi surface vanishes.
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Figure 1. The decomposition k = n̂kF (n̂) + p of a wavevector k into a component kF = n̂kF (n̂)

on the Fermi surface and a component p in the direction of the local Fermi velocity vF . The thick
solid curve is a part of the Fermi surface. This construction defines kF and n̂ as a function of k.
Here vF = ∇kεk|k=kF is defined in terms of the gradient of the free dispersion at the true Fermi
surface, so vF is not necessarily perpendicular to the Fermi surface.

is adiabatically switched on. As discussed by Nozières [1], this artificial level crossing can
be avoided by introducing counter-terms which are determined by the requirement that the
Fermi surface remains fixed as the interaction is adiabatically switched on. This intuitive idea
can be implemented perturbatively as follows [1, 4]: suppose we would like to know the true
Fermi surface of a system with Hamiltonian H = H0 + H1, where H1 describes some general
two-body interaction and the non-interacting part is given by

H0 =
∑
k,σ

εkc†
kσ ckσ . (2)

Here ckσ are the usual annihilation operators of fermions with momentum k and spin σ . An
expansion in powers of H1 leads to Feynman diagrams where vertices corresponding to H1

are connected by propagators G0(k, ω) = [ω − εk + µ]−1. These are singular for ω = 0
and εk = µ, which is not the true Fermi surface defined in equation (1). If the perturbative
expansion is truncated at a finite order, this leads to the unphysical divergences mentioned
above [3]. To avoid these, we add the counter-term

∑
kσ �(kF , i0)c†

kσ ckσ to H0 and subtract
it again from H1, writing H = H ′

0 + H ′
1, with

H ′
0 =

∑
k,σ

[εk + �(kF , i0)]c†
kσ ckσ , (3)

and H ′
1 = H1 − ∑

kσ �(kF , i0)c†
kσ ckσ . Here kF is the wavevector closest to k lying on the

Fermi surface; see figure 1. Using equation (1), the corresponding free propagator can then
be written as G ′

0(k, ω) = [ω − εk + εkF ]−1, which by construction is singular on the true
Fermi surface. But how do we find the counter-term necessary for calculating εkF ? Following
the usual strategy adopted in field theory [5], we may expand the irreducible self-energy
associated with the modified interaction H ′

1 perturbatively in powers of H ′
1 and require that,

order by order in perturbation theory, the corrections vanish when we set ω = 0 and k = kF .
This renormalized perturbation theory leads to complicated integral equations for �(kF , i0),
which must be solved numerically [6].

A few years ago Anderson [7] critically discussed a simplified version of the renormalized
perturbation theory outlined above, where �(kF , i0) is replaced by a constant δµ. He correctly
pointed out that in general it is not permissible to ignore the momentum dependence of
the counter-terms, and argued that in two dimensions the effective renormalized interaction
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between electrons with opposite spin and wavevectors on the true Fermi surface depends
in a subtle way on the boundary conditions, which cannot be adequately taken into account
perturbatively. Thus, according to Anderson a non-perturbative calculation of the renormalized
two-body interaction between strongly correlated electrons in two dimensions is a prerequisite
to understanding the physics of these systems. One of the key points of [7] is the insight
that without a non-perturbative method of locating the true Fermi surface it is not possible to
calculate the correct effective interaction. As a small step towards the solution of this problem,
we offer in the present work an algorithm for calculating the true Fermi surface which does not
rely on the perturbative expansion of counter-terms in powers of the interaction. We show that
such an algorithm follows in a straightforward way from the exact functional renormalization
group (RG) approach described in [8].

2. The Fermi surface as a fixed point manifold of the renormalization group

In the past decade several authors have used Wilsonian RG methods to study interacting Fermi
systems [8–15], using different versions of the RG. In particular, the RG transformations used
in [12–15] exclusively focus on the mode elimination step. Although such a procedure is
sufficient if one considers only the one-loop flow of marginal couplings, in general a complete
Wilsonian RG transformation consists not only of the mode elimination, but includes also
the rescaling of momenta, frequencies, and fields [16]. While the field rescaling (i.e. the
wavefunction renormalization) only becomes important beyond the one-loop approximation,
the RG flow of all relevant and irrelevant couplings is determined in an essential way by the
rescaling step even at the one-loop level. We emphasize that the rescaling of momenta and
frequencies is more than a trivial mathematical change of variables—it is crucial for detecting
possible fixed points of the RG and calculating critical exponents [16]. Moreover, as will
be shown below, the rescaling of momenta and frequencies is very helpful for a derivation
of the self-consistent Hartree–Fock approximation within the framework of the exact RG.
The importance of rescaling in the presence of a Fermi surface has been emphasized by
Polchinski [10] and by Shankar [11]. In [8] we have shown how the exact functional RG
approach developed previously [12–14] can be modified to include the rescaling step. Here, we
shall show that the rescaling is crucial for obtaining a non-perturbative definition of the Fermi
surface as a fixed point manifold of the RG. We obtain an explicit algorithm for calculating
the Fermi surface which does not rely on the iterative procedure of fixing the counter-terms
order by order in perturbation theory. The fixed point property of the Fermi surface has also
been emphasized by Ferraz [17], who recently discussed the Fermi surface renormalization in
a special two-dimensional system using the field theoretical RG.

The exact functional RG can be formulated in terms of an infinite hierarchy of coupled
differential equations for the irreducible 2n-point vertices �

(2n)
ξ (K ′

1, . . . , K ′
n; Kn, . . . , K1),

where K = (σ,k, iω) is a collective label for spin projection σ , momentum k, Matsubara
frequency iω. Here ξ is an infrared cut-off with units of energy which regularizes the singularity
of the free propagator,

G ′
ξ,ξ0

(K ) = �(	K − ξ) − �(	K − ξ0)

iωn − εk + εkF

, (4)

where 	K = |εk − εkF |. To determine the true Fermi surface self-consistently it turns out
to be useful to subtract the counter-term �(kF , i0) from the irreducible two-point vertex [8],
defining

�
(2)
ξ (K ) = −�ξ(K ) + �(kF , i0), (5)
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where �ξ(k, iω) is the irreducible self-energy of the system with infrared cut-off ξ . The exact
flow equation for the vertex �

(2)
ξ (K ) can be written in the form

∂ξ�
(2)
ξ (K ) =

∫
K ′

δ(	K ′ − ξ)

iωn′ − εk′ + εk′
F

+ �
(2)
ξ (K ′)

�
(4)
ξ (K , K ′; K ′, K ), (6)

where
∫

K = ∑
σ

∫
dDk

(2π)D

∫
dω
2π

in D dimensions. The exact flow equation for the irreducible

four-point vertex �
(4)
ξ on the right-hand side of equation (6) involves in turn the irreducible

six-point vertex �
(6)
ξ ,

∂ξ�
(4)
ξ (K ′

1, K ′
2; K2, K1) =

∫
K

δ(	K − ξ)

iωn − εk + εkF + �
(2)
ξ (K )

�
(6)
ξ (K ′

1, K ′
2, K ; K , K2, K1)

+
∫

K

[
δ(	K − ξ)Gξ,ξ0(K ′)

iωn − εk + εkF + �
(2)
ξ (K )

+
Gξ,ξ0(K )δ(	K ′ − ξ)

iωn′ − εk′ + εk′
F

+ �
(2)
ξ (K ′)

]

× {
1
2

[
�

(4)
ξ (K ′

1, K ′
2; K ′, K )�

(4)
ξ (K , K ′, K2, K1)

]
K ′=K1+K2−K

− [
�

(4)
ξ (K ′

1, K ′; K , K1)�
(4)
ξ (K ′

2, K ; K ′, K2)
]

K ′=K +K1−K ′
1

+
[
�

(4)
ξ (K ′

2, K ′; K , K1)�
(4)
ξ (K ′

1, K ; K ′, K2)
]

K ′=K +K1−K ′
2

}
, (7)

where

Gξ,ξ0(K ) = �(	K − ξ) − �(	K − ξ0)

iωn − εk + εkF + �
(2)
ξ (K )

. (8)

The flow equation for the six-point vertex is given in the appendix of [8].
To scale wavevectors toward the Fermi surface, it is convenient to perform a non-linear

coordinate transformation in momentum space, k = n̂kF (n̂) + v̂Fξq/|vF |, and eliminate k
in favour of the dimensionless variable q and the unit vector n̂. Here kF (n̂) is the length of
kF parametrized by n̂, and vF = ∇kεk|kF is the Fermi velocity of the non-interacting system
at the true kF ; see figure 1. The corresponding unit vector is denoted by v̂F = vF/|vF |.
Geometrically, q = vF · p/ξ = vF · (k − n̂kF(n̂))/ξ measures the distance of a given k from
the Fermi surface in units of the infrared cut-off. We also define rescaled frequencies ε = ω/ξ ,
and label the degrees of freedom by Q = (σ, n̂, q, iε) instead of K . To implement the scaling
toward the Fermi surface [10] we consider the RG flow of the following rescaled vertices [8],

�̃
(2)
t (Q) = Z n̂

t

ξ
�

(2)
ξ (K ) = − Z n̂

t

ξ
[�ξ(K ) − �(kF , i0)], (9)

�̃
(2n)
t (Q′

1, . . . , Q′
n; Qn, . . . , Q1)

= νn−1
0 ξn−2[Z

n̂′
1

t · · · Z
n̂′

n
t Z n̂n

t · · · Z n̂1
t ]1/2�

(2n)
ξ (K ′

1, . . . , K ′
n; Kn, . . . , K1). (10)

Here t = − ln(ξ/ξ0) is a logarithmic flow parameter, ν0 = ∫
dk

(2π)D δ(εk − εkF ) is the density
of states (per spin projection) of the non-interacting system at the true Fermi surface, and

Z n̂
t =

[
1 − ∂�ξ(kF , ω + i0)

∂ω

∣∣∣∣
ω=0

]−1

(11)

is the wavefunction renormalization factor.
From equation (6) and the above definitions, it is now easy to show that our rescaled

two-point vertex satisfies the exact flow equation [8]

∂t �̃
(2)
t (Q) = (1 − ηn̂

t − q∂q − ε∂ε)�̃
(2)
t (Q) −

∫
Q′

Ġt(Q′)�̃(4)
t (Q, Q′; Q′, Q), (12)
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where ηn̂
t = −∂t ln Z n̂

t is the flowing anomalous dimension (which vanishes for large t if the
system is a Fermi liquid). The integration measure in equation (12) is defined by∫

Q
=

∑
σ

∫
dSn̂

SD

∫
dq J (n̂, q)

∫
dε

2π
, (13)

where dSn̂ is a surface element and SD is the surface area of the unit sphere in D dimensions,
and J (n̂, q) is the Jacobian associated with the transformation k → (n̂, q) divided by ν0ξ

2.
The function Ġt(Q) in equation (12) is defined by

Ġt (Q) = δ(	̃Q − 1)

Z n̂
t

[
iε − ξ n̂

t (q)
]

+ �̃
(2)
t (Q)

, (14)

where ξ n̂
t (q) = (εkt −εkF )/ξ , with kt = n̂kF (n̂)+ v̂Fξ0e−t q/|vF |. Here 	̃Q = |ξ n̂

t (q)| ≈ |q|.
The flow equation of the rescaled irreducible four-point vertex �̃

(4)
t (Q′

1, Q′
2; Q2, Q1) that

follows from equation (7) in a straightforward way is not explicitly needed in this work; it can
be found in [8].

The shape of the Fermi surface of the interacting system is determined by the RG flow of
the couplings

µ̃n̂
t ≡ �̃

(2)
t (σ, n̂, q = 0, iε = i0). (15)

From equation (12) we see that these couplings satisfy the exact flow equation

∂t µ̃
n̂
t = (1 − ηn̂

t )µ̃n̂
t + �̇

(2)
t (n̂), (16)

with

�̇
(2)
t (n̂) = −

∫
Q′

Ġt(Q′)�̃(4)
t (Q0, Q′; Q′, Q0), (17)

where Q0 = (σ, n̂, q = 0, iε = i0). Note that for dimensions D > 1 there are infinitely many
couplings µ̃n̂

t , labelled by the unit vector n̂. Obviously, each µ̃n̂
t with ηn̂∞ = limt→∞ ηn̂

t < 1
is relevant, so some fine tuning of the bare couplings µ̃n̂

0 is necessary to force µ̃n̂
t to flow

into a fixed point of the RG. Because a finite limit µ̃n̂∞ = limt→∞ µ̃n̂
t means that we have

found the true Fermi surface of the interacting system [8], we conclude that the detailed shape
of the Fermi surface is sensitive to the numerical values of the bare couplings of the theory.
Polchinski [10] pointed out that such a fine tuning of the bare couplings is unnatural, because
physical effects which depend on the precise shape of the Fermi surface are not protected
against small perturbations.

To further elucidate the relation between the relevant couplings µ̃n̂
t and the shape of the

Fermi surface, let us explicitly derive from equation (16) a self-consistency condition for the
Fermi surface. It is useful to transform equation (16) into an integral equation,

µ̃n̂
t = et−∫ t

0 dτ ηn̂
τ

[
µ̃n̂

0 +
∫ t

0
dt ′ e−t ′+

∫ t ′
0 dτ ηn̂

τ �̇
(2)

t ′ (n̂)

]
. (18)

Suppose now that we have adjusted the bare couplings such that for t → ∞ the flowing
couplings µ̃n̂

t indeed approach finite fixed point values. Assuming that the associated
anomalous dimensions ηn̂∞ are smaller than unity2, we conclude from equation (18) that the
limit µ̃n̂∞ = limt→∞ µ̃n̂

t can only be finite if the initial values µ̃n̂
0 are chosen such that

µ̃n̂
0 = −

∫ ∞

0
dt e−t+

∫ t
0 dτ ηn̂

τ �̇
(2)
t (n̂)

=
∫ ∞

0
dt e−t+

∫ t
0 dτ ηn̂

τ

∫
Q′

Ġt(Q′)�̃(4)
t (Q0, Q′; Q′, Q0). (19)

2 For ηn̂∞ > 1 the coupling µ̃n̂
t becomes irrelevant and approaches a constant value (even without fine tuning) provided

that the other couplings flow into a fixed point. In this case the gradient of the momentum distribution 〈c†
kσ ckσ 〉 with

respect to k is finite for all k, so a sharp Fermi surface does not exist.



4784 S Ledowski and P Kopietz

This is an implicit equation for µ̃n̂
0 , relating it to the values of the two-point vertex and the

four-point vertex on the entire RG trajectory. Keeping in mind that the right-hand side of
equation (19) implicitly depends on µ̃n̂

t and that according to equation (9)

�(kF , i0) − �ξ0(kF , i0) = ξ0µ̃
n̂
0 /Z n̂

0 , (20)

it is obvious that equation (19) can be regarded as an integral equation for the counter-term
�(kF , i0), the solution of which yields the true shape of the Fermi surface. At this point it
is instructive to transform equation (19) back to unrescaled variables, choosing for simplicity
the initial conditions �ξ0(kF , i0) = 0 and Z n̂

0 = 1. Using the above definitions we find that
equation (19) is equivalent to

�(kF , i0) =
∑
σ ′

∫
dk′

(2π)D

dω′

2π

�(ξ0 − ξk′)

iω′ − εk′ + µ − �ξk′ (K ′)

× �
(4)
ξk′ (kF , i0, σ,k′, iω′, σ ′; k′, iω′, σ ′,kF , i0, σ ), (21)

where ξk′ = |εk′ − εk′
F
|. Note that the right-hand side of equation (21) involves the flowing

self-energy and four-point vertex at the scales ξ = ξk′ which depend on the distance from
the true Fermi surface. We emphasize that the exact integral equation (21) and the equivalent
rescaled equation (19) fix the counter-term �(kF , i0) from the requirement that for t → ∞
all couplings approach finite fixed point values.

If the system is a Luttinger liquid, then the rescaled version (19) of the self-consistency
equation is more convenient than the unrescaled version (21), because for a Luttinger liquid
the marginal part of the four-point vertex �

(4)
ξ without wavefunction renormalization factors

diverges for ξ → 0, while the rescaled four-point vertex �̃
(4)
t defined in equation (10)

approaches for t → ∞ a finite limit. In this case the divergence of the unrescaled �
(4)
ξ is

cancelled by the vanishing wavefunction renormalization factors at the Luttinger liquid fixed
point [18].

From our point of view, the Fermi surface is a fixed point manifold of the RG, so it is
meaningless to talk about the RG flow of the Fermi surface. However, it is possible to define
a ‘flowing Fermi surface’ kF,t via [8]

εkF,t − µ + �ξ0e−t (kF,t , i0) = 0, (22)

which by construction approaches the true Fermi surface for t → ∞. If we choose the
initial conditions at t = 0 (corresponding to ξ = ξ0) such that �ξ0(kF,0, i0) = 0, then
kF,0 is the Fermi surface of the non-interacting system at the same chemical potential
as the interacting system. This corresponds to a non-interacting system at the density
n0(µ) = ∑

σ

∫
dk

(2π)D �(kF,0(n̂) − |k|), which is in general different from the density n(µ)

of the interacting system given in equation (23). Note that in Fermi liquid theory one usually
works at constant density. However, as discussed by Nozières3, for a self-consistent calculation
of the Fermi surface it is more convenient to determine the counter-term at constant chemical
potential µ, and calculate the corresponding density afterwards4. The practical advantages of
such a procedure have been recognized previously in [19]. Moreover, in the field theoretical
approach advanced by Ferraz [17], the chemical potential is also a RG invariant.

3 See the discussion on p 237 of [1].
4 To compare the Fermi surface of the interacting system with the corresponding Fermi surface without interactions at
the same density n, we should first calculate the density n(µ) corresponding to the Fermi surface kF of the interacting
system from equation (23), and then determine µ0 such that n(µ) = ∑

σ

∫ dk
(2π)D �(µ0 − εk). Given µ0, we may

calculate the Fermi surface of the non-interacting system at the density n(µ) from the roots of εk = µ0.
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3. Possible applications

Given a solution �(kF , i0) of equation (21), we may calculate the compressibility of the
system by substituting the result for �(kF , i0) into equation (1) and solving for kF (n̂), which
implicitly depends on the chemical potential µ. According to the Luttinger theorem [2] the
density n(µ) of the system is determined by the volume enclosed by the Fermi surface,

n(µ) =
∑

σ

∫
dk

(2π)D
�(kF (n̂) − |k|), (23)

so we obtain for the compressibility χn

n2χn = ∂n

∂µ
=

∑
σ

∫
dSn̂

(2π)D
k D−1

F (n̂)
∂kF(n̂)

∂µ
. (24)

Note that the compressibility is a functional of the shape of the true Fermi surface of the
many-body system.

It is instructive to apply the above procedure to a simple model of spinless fermions
with linearized energy dispersion in one dimension. In the absence of scattering processes
involving large momentum transfers, the marginal part of the four-point vertex can then be
parametrized by a single coupling constant g̃t with a vanishing β-function [11, 18], so that
g̃t = g̃0 for all t . Within the one-loop approximation the flow equation for the relevant coupling
µ̃t is then simply ∂t µ̃t = µ̃t − g̃0/2, so we obtain from equation (20) for the counter-term
�(kF , i0) = ξ0 g̃0/2. For simplicity we have assumed that �ξ0(kF , i0) ≈ 0 and Z0 ≈ 1, which
is a good approximation for sufficiently large ξ0. A reasonable choice is ξ0 = εkF . Then we
obtain from equation (24) n2χn = ν0/(1 + g̃0/2), which amounts to an infinite resummation
of bubble diagrams.

In the simplest approximation equations (19) and (21) reduce to the Hartree–Fock self-
consistency equation for the counter-term �(kF , i0). To see this, we approximate the flowing
four-point vertex in equation (21) as follows:

�
(4)
ξk′ (kF , i0, σ,k′, iω′, σ ′; k′, iω′, σ ′,kF , i0, σ )

≈ �
(4)

ξ=0(kF , i0, σ,k′
F , i0, σ ′; k′

F , i0, σ ′,kF , i0, σ )

≡ �
(4)

0 (kF , σ ; k′
F , σ ′), (25)

i.e. we project all momenta onto the Fermi surface, ignore the frequency dependence, and
replace the flowing vertex by its fixed point value. Moreover, at this level of approximation we
may also make the replacement �ξk′ (K ′) → �(k′

F , i0) on the right-hand side of equation (21).
For ξ0 → ∞ we then obtain the Hartree–Fock self-consistency equation

�(kF , i0) =
∑
σ ′

∫
dk′

(2π)D
�

(4)
0 (kF , σ ; k′

F , σ ′)�(µ − εk′ − �(k′
F , i0)). (26)

For a given interaction vertex �
(4)

0 (kF , σ ; k′
F , σ ′), equation (26) can be used to study possible

Fermi surface instabilities such as the Pomeranchuk instability [20] at the Hartree–Fock level,
which should always be the first step before more elaborate methods are used. A trivial
generalization of equation (26) with a spin-dependent counter-term �(kF , i0, σ ) leads to the
self-consistent Hartree–Fock equation for spontaneous ferromagnetism, implying the usual
Stoner instability for strong enough interactions in the spin channel. More generally, if we
allow for other types of symmetry breaking, within the same approximations as above the
exact RG fixed point equation for the two-point vertex can be reduced to the Hartree–Fock
self-consistency equation for the corresponding order parameter. Note that no approximation
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has been made in deriving equations (19) and (21), so these exact fixed point equations (or
generalizations thereof for other types of symmetry breaking) can serve as a starting point for
a systematic calculation of corrections to the Hartree–Fock approximation.

4. Conclusions

In summary, in this work we have shown how the true Fermi surface of an interacting Fermi
system can be defined self-consistently as a fixed point property of the RG. Our main results
are the two equivalent integral equations (19) and (21), which determine the counter-term
�(kF , i0) necessary for calculating the Fermi surface from equation (1). In the simplest
approximation, equation (21) reduces to the Hartree–Fock self-consistency condition for the
counter-term. However, systematic improvements are possible.

Very recently, Dusuel and Douçot [21] presented a detailed analysis of the Fermi surface
deformations in quasi-one-dimensional electronic systems, using perturbation theory and the
RG method. They realized that some ‘slight modification’ of the Wilson–Polchinski RG
approach is necessary in order to use this approach for a self-consistent calculation of the
Fermi surface, but admitted that a practical implementation of such a modification remains to
be attempted. We have shown here that the necessary modification of the functional RG used
in [12–15] is simply the usual rescaling step [8], which is an essential part of the ‘orthodox’
Wilsonian RG [16]. We conclude that the functional RG approach for interacting Fermi
systems in the form advanced in [8] provides an elegant solution to the difficult [1] problem
of self-consistently constructing the true Fermi surface.
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[21] Dusuel S and Douçot B 2002 Preprint cond-mat/0208434


